STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
DR97_6213annotation not available (527 aa)    
Predicted Functional Partners:
4-hydroxyproline epimerase; Allows intracellular utilization of 4-hydroxyproline, one of the major constituents of host collagen, by converting trans-4-hydroxy- L-proline (t4LHyp) to cis-4-hydroxy-D-proline (c4DHyp), which can be further metabolized by intracellular 4-hydroxy-D-proline oxidases. Strong B-cell mitogen. Plays an important role in the regulation of intra- and extracellular amino acid pools, allowing the bacterium to profit from host precursors and enzymatic pathways. Cannot use L- proline, trans-3-hydroxy-L-proline (t3LHyp) and pyrrolidone-5- carboxylate (P5C) as substrate
annotation not available
Hypothetical protein; Belongs to the mandelate racemase/muconate lactonizing enzyme family
1-pyrroline-4-hydroxy-2-carboxylate deaminase; Belongs to the DapA family
Trans-L-3-hydroxyproline dehydratase; Probably catalyzes the dehydration of trans-3-hydroxy-L- proline (t3LHyp) to Delta(1)-pyrroline-2-carboxylate (Pyr2C). Is likely involved in a degradation pathway that converts t3LHyp to L-proline, which would allow P.aeruginosa to grow on t3LHyp as a sole carbon source . Displays neither trans-4-hydroxy-L-proline (t4LHyp) epimerase nor proline racemase activity
annotation not available
Nadh dehydrogenase (quinone), g subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity)
Succinate dehydrogenase / fumarate reductase, flavoprotein subunit; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily
annotation not available
Malate/l-lactate dehydrogenase family protein; Catalyzes the reduction of both Delta(1)-pyrroline-2- carboxylate (Pyr2C) and Delta(1)-piperideine-2-carboxylate (Pip2C) to L-proline and L-pipecolate, respectively, using NADPH as the electron donor. Cannot use NADH instead of NADPH. Is likely involved in a degradation pathway that converts trans-3-hydroxy-L-proline (t3LHyp) to L-proline, which would allow P.aeruginosa to grow on t3LHyp as a sole carbon source. Can also catalyze the reverse oxidation reactions, albeit at a much lower rate. Is also able to use Delta(1)-pyrroline- (4S)-hydr [...]
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (18%) [HD]