STRINGSTRING
mutL protein (Burkholderia cepacia) - STRING interaction network
"mutL" - DNA mismatch repair protein MutL in Burkholderia cepacia
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mutLDNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (669 aa)    
Predicted Functional Partners:
mutS
DNA mismatch repair protein MutS; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (885 aa)
 
  0.954
miaA
tRNA dimethylallyltransferase; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A); Belongs to the IPP transferase family (324 aa)
     
 
  0.922
WI67_13815
tRNA threonylcarbamoyladenosine biosynthesis protein TsaE; T6A_YjeE- tRNA threonylcarbamoyl adenosine modification protein YjeE (184 aa)
 
  0.850
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (917 aa)
   
 
  0.832
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (347 aa)
   
 
  0.802
mutY
mutY- A/G-specific adenine glycosylase (368 aa)
 
   
  0.800
recJ
recJ- single-stranded-DNA-specific exonuclease RecJ (565 aa)
 
 
  0.789
mutM
Formamidopyrimidine-DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3’- and 5’-phosphates (275 aa)
   
   
  0.755
DM42_2977
comEC_Rec2- DNA internalization-related competence protein ComEC/Rec2 (826 aa)
 
     
  0.713
dedA
annotation not available (227 aa)
              0.703
Your Current Organism:
Burkholderia cepacia
NCBI taxonomy Id: 292
Other names: ATCC 25416, B. cepacia, Burkholderia cepacia, Burkholderia cepacia genomovar I, CCUG 12691, CCUG 13226, CFBP 2227, CIP 80.24, DSM 7288, ICMP 5796, IFO 14074, JCM 5964, NBRC 14074, NCCB 76047, NCPPB 2993, NCTC 10743, NRRL B-14810, Pseudomonas cepacia, Pseudomonas kingii, Pseudomonas multivorans, strain 717-ICPB 25, strain Ballard 717
Server load: low (18%) [HD]