node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AOI83770.1 | folD | WI67_15550 | WI67_11580 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.659 |
AOI83770.1 | gcvP | WI67_15550 | WI67_00820 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.738 |
AOI83770.1 | gcvT | WI67_15550 | WI67_00830 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.927 |
AOI83770.1 | glyA | WI67_15550 | WI67_03825 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.916 |
AOI83770.1 | glyA-2 | WI67_15550 | WI67_29495 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.916 |
AOI83770.1 | metF | WI67_15550 | WI67_01095 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.986 |
AOI83770.1 | purH | WI67_15550 | WI67_03225 | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoribosylaminoimidazolecarboxamide formyltransferase; Involved in de novo purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.914 |
LpdA | folD | WI67_11555 | WI67_11580 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.549 |
LpdA | gcvH | WI67_11555 | WI67_00825 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.984 |
LpdA | gcvP | WI67_11555 | WI67_00820 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.971 |
LpdA | gcvT | WI67_11555 | WI67_00830 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.996 |
LpdA | glyA | WI67_11555 | WI67_03825 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.943 |
LpdA | glyA-2 | WI67_11555 | WI67_29495 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.943 |
LpdA | lpdA | WI67_11555 | WI67_07490 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.963 |
LpdA | metF | WI67_11555 | WI67_01095 | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 5,10-methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family. | 0.421 |
folD | AOI83770.1 | WI67_11580 | WI67_15550 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.659 |
folD | LpdA | WI67_11580 | WI67_11555 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.549 |
folD | gcvH | WI67_11580 | WI67_00825 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.573 |
folD | gcvP | WI67_11580 | WI67_00820 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.856 |
folD | gcvT | WI67_11580 | WI67_00830 | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine cleavage system protein T; The glycine cleavage system catalyzes the degradation of glycine. | 0.954 |