STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
infBTranslation initiation factor if-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (971 aa)    
Predicted Functional Partners:
rpsK
Small subunit ribosomal protein s11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome
 
 0.997
rpsM
Small subunit ribosomal protein s13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites
  
 0.997
rpsE
Small subunit ribosomal protein s5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body
  
 0.997
rpsH
Small subunit ribosomal protein s8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit
  
 0.997
rplB
Large subunit ribosomal protein l2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome
  
 0.997
rpsG
Small subunit ribosomal protein s7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA
  
 0.997
rpsB
Small subunit ribosomal protein s2; Belongs to the universal ribosomal protein uS2 family
 
 0.997
rpsC
Small subunit ribosomal protein s3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation
  
 0.996
rplC
Large subunit ribosomal protein l3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit
  
 0.996
rpsJ
Small subunit ribosomal protein s10; Involved in the binding of tRNA to the ribosomes
  
 0.995
Your Current Organism:
Burkholderia cepacia
NCBI taxonomy Id: 292
Other names: ATCC 25416, B. cepacia, Burkholderia cepacia genomovar I, CCUG 12691, CCUG 13226, CFBP 2227, CIP 80.24, DSM 7288, ICMP 5796, IFO 14074, JCM 5964, NBRC 14074, NCCB 76047, NCPPB 2993, NCTC 10743, NRRL B-14810, Pseudomonas cepacia, Pseudomonas kingii, Pseudomonas multivorans, strain 717-ICPB 25, strain Ballard 717
Server load: low (12%) [HD]