STRINGSTRING
xseA protein (Burkholderia cepacia) - STRING interaction network
"xseA" - Exodeoxyribonuclease 7 large subunit in Burkholderia cepacia
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
xseAExodeoxyribonuclease 7 large subunit; Bidirectionally degrades single-stranded DNA into large acid-insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family (460 aa)    
Predicted Functional Partners:
xseB
Exodeoxyribonuclease 7 small subunit; Bidirectionally degrades single-stranded DNA into large acid-insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family (97 aa)
 
  0.997
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (917 aa)
 
     
  0.788
ruvA
Holliday junction ATP-dependent DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (193 aa)
 
   
  0.772
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate (1354 aa)
   
   
  0.740
VL15_09250
Superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems (192 aa)
       
  0.694
recQ
recQ- ATP-dependent DNA helicase RecQ (615 aa)
 
   
  0.655
ribD
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (373 aa)
   
        0.646
radA
DNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3’ invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA’s homology-searching function (458 aa)
   
   
  0.635
holB
holB- DNA polymerase III, delta’ subunit (342 aa)
 
     
  0.632
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (347 aa)
         
  0.631
Your Current Organism:
Burkholderia cepacia
NCBI taxonomy Id: 292
Other names: ATCC 25416, B. cepacia, Burkholderia cepacia, Burkholderia cepacia genomovar I, CCUG 12691, CCUG 13226, CFBP 2227, CIP 80.24, DSM 7288, ICMP 5796, IFO 14074, JCM 5964, NBRC 14074, NCCB 76047, NCPPB 2993, NCTC 10743, NRRL B-14810, Pseudomonas cepacia, Pseudomonas kingii, Pseudomonas multivorans, strain 717-ICPB 25, strain Ballard 717
Server load: low (18%) [HD]