STRINGSTRING
mfd protein (Burkholderia cepacia) - STRING interaction network
"mfd" - Transcription-repair-coupling factor in Burkholderia cepacia
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mfdTranscription-repair-coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site (1156 aa)    
Predicted Functional Partners:
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1368 aa)
   
 
  0.896
recN
DNA repair protein RecN; May be involved in recombinational repair of damaged DNA (549 aa)
 
 
  0.879
ruvA
Holliday junction ATP-dependent DNA helicase RuvA; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (193 aa)
 
   
  0.873
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (917 aa)
 
     
  0.839
ruvB
Holliday junction ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (356 aa)
 
   
  0.797
ileS
Isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (945 aa)
         
  0.790
murA
UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily (420 aa)
 
   
  0.773
ispD
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Catalyzes the formation of 4-diphosphocytidyl-2-C- methyl-D-erythritol from CTP and 2-C-methyl-D-erythritol 4- phosphate (MEP) (236 aa)
         
  0.737
rplI
50S ribosomal protein L9; Binds to the 23S rRNA (150 aa)
 
          0.728
uvrC
UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (678 aa)
 
 
  0.722
Your Current Organism:
Burkholderia cepacia
NCBI taxonomy Id: 292
Other names: ATCC 25416, B. cepacia, Burkholderia cepacia, Burkholderia cepacia genomovar I, CCUG 12691, CCUG 13226, CFBP 2227, CIP 80.24, DSM 7288, ICMP 5796, IFO 14074, JCM 5964, NBRC 14074, NCCB 76047, NCPPB 2993, NCTC 10743, NRRL B-14810, Pseudomonas cepacia, Pseudomonas kingii, Pseudomonas multivorans, strain 717-ICPB 25, strain Ballard 717
Server load: low (15%) [HD]