STRINGSTRING
WI67_09555 protein (Burkholderia cepacia) - STRING interaction network
"WI67_09555" - Pseudouridine synthase in Burkholderia cepacia
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
WI67_09555Pseudouridine synthase; Responsible for synthesis of pseudouridine from uracil (361 aa)    
Predicted Functional Partners:
DM42_3310
annotation not available (279 aa)
 
 
  0.966
cgtA
GTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control; Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family (370 aa)
 
 
  0.853
rsmH
Ribosomal RNA small subunit methyltransferase H; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA (313 aa)
 
   
  0.803
engA
GTPase Der; GTPase that plays an essential role in the late steps of ribosome biogenesis (445 aa)
 
 
  0.800
lepA
Elongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (597 aa)
 
   
  0.790
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA (360 aa)
 
 
  0.761
rplR
50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance (121 aa)
 
      0.752
trmD
tRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs; Belongs to the RNA methyltransferase TrmD family (256 aa)
 
     
  0.752
rplO
50S ribosomal protein L15; Binds to the 23S rRNA (144 aa)
 
        0.752
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (142 aa)
 
      0.732
Your Current Organism:
Burkholderia cepacia
NCBI taxonomy Id: 292
Other names: ATCC 25416, B. cepacia, Burkholderia cepacia, Burkholderia cepacia genomovar I, CCUG 12691, CCUG 13226, CFBP 2227, CIP 80.24, DSM 7288, ICMP 5796, IFO 14074, JCM 5964, NBRC 14074, NCCB 76047, NCPPB 2993, NCTC 10743, NRRL B-14810, Pseudomonas cepacia, Pseudomonas kingii, Pseudomonas multivorans, strain 717-ICPB 25, strain Ballard 717
Server load: low (19%) [HD]