node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ABF65582.1 | hslU | TM1040_2850 | TM1040_2851 | annotation not available | ATP-dependent protease ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis | 0.856 |
ABF65582.1 | hslV | TM1040_2850 | TM1040_2849 | annotation not available | ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery | 0.885 |
clpB | clpP | TM1040_0130 | TM1040_1527 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | 0.778 |
clpB | dnaJ | TM1040_0130 | TM1040_0009 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | 0.890 |
clpB | dnaK | TM1040_0130 | TM1040_0010 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | Chaperone protein DnaK; Acts as a chaperone | 0.973 |
clpB | groS | TM1040_0130 | TM1040_0596 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | 10 kDa chaperonin; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter | 0.860 |
clpB | grpE | TM1040_0130 | TM1040_2874 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- dependent [...] | 0.969 |
clpB | hslU | TM1040_0130 | TM1040_2851 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | ATP-dependent protease ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis | 0.841 |
clpB | hslV | TM1040_0130 | TM1040_2849 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery | 0.728 |
clpB | lon | TM1040_0130 | TM1040_0775 | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short-lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner | 0.761 |
clpP | clpB | TM1040_1527 | TM1040_0130 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | 0.778 |
clpP | dnaJ | TM1040_1527 | TM1040_0009 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | 0.575 |
clpP | dnaK | TM1040_1527 | TM1040_0010 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | Chaperone protein DnaK; Acts as a chaperone | 0.598 |
clpP | groS | TM1040_1527 | TM1040_0596 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | 10 kDa chaperonin; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter | 0.820 |
clpP | grpE | TM1040_1527 | TM1040_2874 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- dependent [...] | 0.694 |
clpP | hslU | TM1040_1527 | TM1040_2851 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | ATP-dependent protease ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis | 0.676 |
clpP | hslV | TM1040_1527 | TM1040_2849 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery | 0.664 |
clpP | lon | TM1040_1527 | TM1040_0775 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | Lon protease; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short-lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner | 0.841 |
clpP | rplI | TM1040_1527 | TM1040_1043 | ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins; Belongs to the peptidase S14 family | 50S ribosomal protein L9; Binds to the 23S rRNA | 0.431 |
dnaJ | clpB | TM1040_0009 | TM1040_0130 | Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] | Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family | 0.890 |