STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glyQSglycine--tRNA ligase; Catalyzes the attachment of glycine to tRNA(Gly). Belongs to the class-II aminoacyl-tRNA synthetase family. (477 aa)    
Predicted Functional Partners:
proB
Glutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate.
 
 
    0.886
leuS
leucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 
 0.764
metG
Potassium transporter; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
  
 
 0.745
ANU39555.1
serine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  
 0.724
tyrS
tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily.
 
  
 0.715
lysS
lysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family.
  
  
 0.707
ppa
Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions.
  
  
 0.700
alaS
alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain.
  
 
 0.699
aspS-2
aspartate--tRNA(Asn) ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily.
  
 
 0.678
asnS
asparagine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.678
Your Current Organism:
Flavonifractor plautii
NCBI taxonomy Id: 292800
Other names: ATCC 29863, ATCC 49531 [[Clostridium orbiscindens]], Bacillus plauti, CCUG 28093, Clostridium orbiscindens, DSM 4000, DSM 6740 [[Clostridium orbiscindens]], DSM 6749 [[Clostridium orbiscindens]], Eubacterium plautii, F. plautii, Fusobacterium plautii, Fusocillus plauti, Pseudoflavonifractor sp. YL31, Zuberella plauti, strain Prevot S1
Server load: low (22%) [HD]