STRINGSTRING
JNHE01000006_gene1144 protein (Pseudomonas oleovorans) - STRING interaction network
"JNHE01000006_gene1144" - annotation not available in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JNHE01000006_gene1144annotation not available (281 aa)    
Predicted Functional Partners:
metE
5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation (765 aa)
  0.996
JNHE01000002_gene2095
annotation not available (1236 aa)
  0.991
metZ
O-succinylhomoserine sulfhydrylase; Catalyzes the formation of L-homocysteine from O- succinyl-L-homoserine (OSHS) and hydrogen sulfide (403 aa)
   
  0.981
gcvP
Glycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family (953 aa)
   
 
  0.956
ahcY
Adenosylhomocysteinase; May play a key role in the regulation of the intracellular concentration of adenosylhomocysteine (468 aa)
   
 
  0.943
metK
S-adenosylmethionine synthase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme (396 aa)
   
 
  0.933
JNHE01000003_gene1789
annotation not available (412 aa)
   
  0.916
folD
Bifunctional protein FolD; Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (284 aa)
   
 
  0.906
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2’-deoxyuridine- 5’-monophosphate (dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis (264 aa)
   
 
  0.903
JNHE01000031_gene685
annotation not available (305 aa)
   
   
  0.888
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (19%) [HD]