STRINGSTRING
fdhD protein (Pseudomonas oleovorans) - STRING interaction network
"fdhD" - Sulfur carrier protein FdhD in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fdhDSulfur carrier protein FdhD; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH (271 aa)    
Predicted Functional Partners:
JNHE01000006_gene1175
annotation not available (779 aa)
 
  0.989
JNHE01000014_gene2995
annotation not available (810 aa)
 
 
  0.948
JNHE01000006_gene1085
annotation not available (958 aa)
   
  0.865
nuoC
NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family (587 aa)
       
    0.836
JNHE01000004_gene1609
annotation not available (701 aa)
 
 
  0.817
iscS
Cysteine desulfurase IscS; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily (382 aa)
   
 
  0.807
JNHE01000014_gene2996
annotation not available (308 aa)
 
   
  0.791
JNHE01000006_gene1173
annotation not available (296 aa)
 
          0.771
JNHE01000002_gene2149
annotation not available (903 aa)
 
  0.763
JNHE01000035_gene4258
annotation not available (254 aa)
 
   
  0.748
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (13%) [HD]