STRINGSTRING
hslO protein (Pseudomonas oleovorans) - STRING interaction network
"hslO" - 33 kDa chaperonin in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hslO33 kDa chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress (295 aa)    
Predicted Functional Partners:
JNHE01000006_gene1196
annotation not available (142 aa)
   
   
  0.867
hslV
ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery (170 aa)
   
   
  0.804
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (376 aa)
   
   
  0.804
JNHE01000001_gene251
annotation not available (102 aa)
   
 
 
  0.780
hslU
ATP-dependent protease ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis (446 aa)
     
   
  0.773
htpG
Chaperone protein HtpG; Molecular chaperone. Has ATPase activity (632 aa)
   
   
  0.765
JNHE01000019_gene4161
annotation not available (107 aa)
       
 
  0.704
JNHE01000009_gene3295
annotation not available (189 aa)
     
   
  0.703
dnaK
Chaperone protein DnaK; Acts as a chaperone (638 aa)
   
   
  0.689
fpg
Formamidopyrimidine-DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3’- and 5’-phosphates (270 aa)
 
   
  0.673
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (15%) [HD]