STRINGSTRING
JNHE01000012_gene1463 protein (Pseudomonas oleovorans) - STRING interaction network
"JNHE01000012_gene1463" - annotation not available in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JNHE01000012_gene1463annotation not available (144 aa)    
Predicted Functional Partners:
secY
Protein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently (428 aa)
     
 
  0.859
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth; Belongs to the IMPDH/GMPR family (489 aa)
     
 
  0.767
JNHE01000012_gene1462
annotation not available (468 aa)
              0.601
msrP
Protein-methionine-sulfoxide reductase catalytic subunit MsrP; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecifi [...] (308 aa)
       
  0.569
JNHE01000037_gene4289
annotation not available (324 aa)
   
      0.531
apaH
Bis(5’-nucleosyl)-tetraphosphatase, symmetrical; Hydrolyzes diadenosine 5’,5’’’-P1,P4-tetraphosphate to yield ADP (272 aa)
   
      0.531
JNHE01000014_gene2996
annotation not available (308 aa)
         
  0.505
purH
annotation not available (535 aa)
       
    0.487
JNHE01000019_gene4143
annotation not available (271 aa)
     
      0.481
JNHE01000033_gene963
annotation not available (456 aa)
       
    0.481
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (13%) [HD]