STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
gidAtRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family (622 aa)    
Predicted Functional Partners:
Ribosomal RNA small subunit methyltransferase G; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA
tRNA modification GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin- like GTPase superfamily. TrmE GTPase family
annotation not available
tRNA-specific 2-thiouridylase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34
annotation not available
annotation not available
Elongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner
Ribonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA
GTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control; Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (9%) [HD]