STRINGSTRING
rsgA protein (Pseudomonas oleovorans) - STRING interaction network
"rsgA" - Small ribosomal subunit biogenesis GTPase RsgA in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rsgASmall ribosomal subunit biogenesis GTPase RsgA; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Helps release RbfA from mature subunits. May play a role in the assembly of ribosomal proteins into the subunit. Circularly permuted GTPase that catalyzes slow GTP hydrolysis, GTPase activity is stimulated by the 30S ribosomal subunit (343 aa)    
Predicted Functional Partners:
rpsL
30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit (123 aa)
     
    0.941
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (228 aa)
       
    0.938
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (98 aa)
       
    0.936
rpsH
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (104 aa)
       
    0.936
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit (76 aa)
       
    0.936
rpsF
30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA (143 aa)
       
  0.917
rpsQ
30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5’-end of 16S ribosomal RNA (69 aa)
   
 
    0.908
rpsO
30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome (89 aa)
     
    0.907
rpsP
annotation not available (83 aa)
     
    0.904
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (130 aa)
     
    0.901
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (15%) [HD]