STRINGSTRING
dnaG protein (Pseudomonas oleovorans) - STRING interaction network
"dnaG" - DNA primase in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaGDNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication; Belongs to the DnaG primase family (666 aa)    
Predicted Functional Partners:
JNHE01000014_gene2904
Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins (464 aa)
 
  0.989
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (931 aa)
 
 
  0.922
rpoD
RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth (602 aa)
 
 
  0.920
JNHE01000024_gene2490
Beta sliding clamp; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3’-5’ exonuclease proofreading activity. The beta chain is required for initiation of replication as [...] (367 aa)
 
  0.894
JNHE01000019_gene4153
annotation not available (1176 aa)
 
  0.854
smpB
SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans-translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a "tag peptide", a short internal open reading frame. During trans-translation Ala- aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (160 aa)
 
   
  0.851
JNHE01000032_gene891
Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism (163 aa)
 
 
 
  0.848
dnaA
Chromosomal replication initiator protein DnaA; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box)- 5’-TTATC[CA]A[CA]A-3’. DnaA binds to ATP and to acidic phospholipids (494 aa)
 
   
  0.842
dnaX
DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity (678 aa)
 
 
  0.841
rpsB
annotation not available (246 aa)
 
   
  0.822
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (24%) [HD]