STRINGSTRING
JNHE01000032_gene891 protein (Pseudomonas oleovorans) - STRING interaction network
"JNHE01000032_gene891" - Single-stranded DNA-binding protein in Pseudomonas oleovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JNHE01000032_gene891Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism (163 aa)    
Predicted Functional Partners:
rpsF
30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA (143 aa)
 
   
  0.944
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit (76 aa)
   
 
  0.917
JNHE01000032_gene890
annotation not available (464 aa)
   
   
  0.882
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit (206 aa)
 
   
  0.880
dnaX
DNA polymerase III subunit gamma/tau; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity (678 aa)
 
 
  0.878
priA
Primosomal protein N’; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA (739 aa)
   
 
  0.870
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (931 aa)
 
 
  0.864
rplU
50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20 (103 aa)
     
        0.854
recO
DNA repair protein RecO; Involved in DNA repair and RecF pathway recombination (229 aa)
       
 
  0.852
JNHE01000024_gene2490
Beta sliding clamp; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3’-5’ exonuclease proofreading activity. The beta chain is required for initiation of replication as [...] (367 aa)
 
   
  0.850
Your Current Organism:
Pseudomonas oleovorans
NCBI taxonomy Id: 301
Other names: ATCC 8062, CCUG 2087, CFBP 5589, CIP 59.11, IFO 13583, JCM 11598, LMG 2229, NBRC 13583, NCIMB 6576, NCTC 10692, NRRL B-778, P. oleovorans, Pseudomonas oleovorans, Pseudomonas sp. MGY01
Server load: low (13%) [HD]