Export your current network:
... as a bitmap image:
file format is 'PNG': portable network graphic
... as a high-resolution bitmap:
same PNG format, but resolution at 400 dpi
... as a vector graphic:
SVG: scalable vector graphic - can be opened and edited in Illustrator, CorelDraw, Dia, etc
... as simple tabular text output:
TSV: tab separated values - can be opened in Excel
... as an XML summary:
structured XML interaction data, according to the 'PSI-MI' data standard
... network coordinates:
a flat-file format describing the coordinates and colors of nodes in the network
... protein sequences:
MFA: multi-fasta format - containing the aminoacid sequences in the network
... protein annotations:
a tab-delimited file describing the names, domains and annotated functions of the network proteins
Browse interactions in tabular form:
node1 | node2 | node1 annotation | node2 annotation | score |
JNB_08859 | JNB_08864 | Uncharacterized protein | NDH-1 subunit B ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient | 0.859 |
JNB_08859 | JNB_08869 | Uncharacterized protein | Uncharacterized protein | 0.647 |
JNB_08864 | JNB_08859 | NDH-1 subunit B ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient | Uncharacterized protein | 0.859 |
JNB_08864 | JNB_08869 | NDH-1 subunit B ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient | Uncharacterized protein | 0.647 |
JNB_08869 | JNB_08859 | Uncharacterized protein | Uncharacterized protein | 0.647 |
JNB_08869 | JNB_08864 | Uncharacterized protein | NDH-1 subunit B ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient | 0.647 |