STRINGSTRING
R2601_08031 protein (Pelagibaca bermudensis) - STRING interaction network
"R2601_08031" - BolA protein, truncation in Pelagibaca bermudensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
R2601_08031BolA protein, truncation (85 aa)    
Predicted Functional Partners:
R2601_22532
Glutaredoxin (120 aa)
   
 
  0.884
R2601_08036
DnaJ domain protein (209 aa)
   
        0.760
purQ
Phosphoribosylformylglycinamidine synthase subunit I ; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to [...] (222 aa)
       
    0.558
purS
Phosphoribosylformylglycinamidine synthase subunit III ; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought t [...] (76 aa)
       
    0.558
R2601_14880
Uncharacterized protein (273 aa)
   
      0.477
R2601_15357
UPF0176 protein R2601_15357 (309 aa)
   
        0.464
purC
SAICAR synthetase (253 aa)
   
        0.462
R2601_23680
Cobalt chelatase, CobS small subunit (327 aa)
              0.451
R2601_23670
Cobalt chelatase, pCobT subunit (625 aa)
              0.451
purL
Phosphoribosylformylglycinamidine synthase subunit II ; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought to [...] (721 aa)
              0.451
Your Current Organism:
Pelagibaca bermudensis
NCBI taxonomy Id: 314265
Other names: P. bermudensis HTCC2601, Pelagibaca, Pelagibaca Cho and Giovannoni 2006, Pelagibaca bermudensis, Pelagibaca bermudensis Cho and Giovannoni 2006, Pelagibaca bermudensis HTCC2601, Pelagibaca bermudensis str. HTCC2601, Pelagibaca bermudensis strain HTCC2601, Roseovarius sp. HTCC2601
Server load: low (7%) [HD]