STRINGSTRING
groL protein (Pelagibaca bermudensis) - STRING interaction network
"groL" - Protein Cpn60 in Pelagibaca bermudensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
groLProtein Cpn60 ; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (547 aa)    
Predicted Functional Partners:
groS
Protein Cpn10 ; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter (97 aa)
 
  0.999
dnaK
Heat shock protein 70 ; Acts as a chaperone (642 aa)
 
  0.999
grpE
HSP-70 cofactor ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- depend [...] (185 aa)
 
  0.993
dnaJ
Chaperone protein DnaJ ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (385 aa)
 
 
  0.979
clpX
ATP-dependent Clp protease ATP-binding subunit ClpX ; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (421 aa)
 
 
  0.955
clpP
Endopeptidase Clp ; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (210 aa)
 
 
  0.946
rpoH
RNA polymerase sigma-32 factor (298 aa)
   
 
  0.944
fusA
Elongation factor G ; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (707 aa)
 
 
  0.904
ftsH
ATP-dependent zinc metalloprotease FtsH ; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (637 aa)
   
 
  0.900
rpoD
Sigma-70 ; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth (661 aa)
   
 
  0.897
Your Current Organism:
Pelagibaca bermudensis
NCBI taxonomy Id: 314265
Other names: P. bermudensis HTCC2601, Pelagibaca, Pelagibaca Cho and Giovannoni 2006, Pelagibaca bermudensis, Pelagibaca bermudensis Cho and Giovannoni 2006, Pelagibaca bermudensis HTCC2601, Pelagibaca bermudensis str. HTCC2601, Pelagibaca bermudensis strain HTCC2601, Roseovarius sp. HTCC2601
Server load: low (5%) [HD]