STRINGSTRING
ileS protein (Pelagibaca bermudensis) - STRING interaction network
"ileS" - Isoleucyl-tRNA synthetase in Pelagibaca bermudensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ileSIsoleucyl-tRNA synthetase ; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as ’pretransfer’ editing and involves the hydrolysis of activated Val-AMP. The other activity is designated ’posttransfer’ editing and involves deacylation of mischarged Val-tRNA(Ile) (996 aa)    
Predicted Functional Partners:
pheT
Phenylalanyl-tRNA synthetase beta subunit (798 aa)
   
  0.997
leuS
Leucyl-tRNA synthetase (856 aa)
 
0.956
argS
Arginyl-tRNA synthetase (580 aa)
 
  0.951
R2601_15245
Glutamyl-tRNA synthetase ; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (445 aa)
 
  0.943
R2601_25251
Glutamyl-tRNA synthetase ; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (468 aa)
 
  0.938
proS
Prolyl-tRNA synthetase ; Catalyzes the attachment of proline to tRNA(Pro) in a two-step reaction- proline is first activated by ATP to form Pro- AMP and then transferred to the acceptor end of tRNA(Pro) (445 aa)
 
  0.936
R2601_24150
Glutamyl-/ glutaminyl-tRNA synthetase (285 aa)
 
  0.912
metG
Methionyl-tRNA synthetase ; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (570 aa)
     
  0.911
alaS
Alanyl-tRNA synthetase ; Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction- alanine is first activated by ATP to form Ala- AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain (891 aa)
 
 
  0.902
R2601_16917
Chaperonin csaA (112 aa)
   
  0.857
Your Current Organism:
Pelagibaca bermudensis
NCBI taxonomy Id: 314265
Other names: P. bermudensis HTCC2601, Pelagibaca, Pelagibaca Cho and Giovannoni 2006, Pelagibaca bermudensis, Pelagibaca bermudensis Cho and Giovannoni 2006, Pelagibaca bermudensis HTCC2601, Pelagibaca bermudensis str. HTCC2601, Pelagibaca bermudensis strain HTCC2601, Roseovarius sp. HTCC2601
Server load: low (6%) [HD]