STRINGSTRING
R2601_21782 protein (Pelagibaca bermudensis) - STRING interaction network
"R2601_21782" - ATP synthase subunit E in Pelagibaca bermudensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
R2601_21782ATP synthase subunit E (241 aa)    
Predicted Functional Partners:
R2601_09265
Adenylate kinase ; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP (192 aa)
   
   
    0.943
R2601_26661
Adenylate kinase ; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP (228 aa)
         
    0.935
R2601_21777
ATP synthase subunit E (382 aa)
 
   
 
0.853
R2601_23208
Cytochrome-c oxidase chain II/c (319 aa)
       
    0.817
R2601_21792
NADH dehydrogenase-ubiquinone oxidoreductase, chain F (431 aa)
       
  0.799
nuoD
NDH-1 subunit D ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (410 aa)
       
    0.734
nuoC
NDH-1 subunit C ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (197 aa)
       
    0.710
nuoB
NDH-1 subunit B ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (206 aa)
       
  0.702
R2601_21787
Uncharacterized protein (87 aa)
              0.655
R2601_21802
Uncharacterized protein (117 aa)
              0.652
Your Current Organism:
Pelagibaca bermudensis
NCBI taxonomy Id: 314265
Other names: P. bermudensis HTCC2601, Pelagibaca, Pelagibaca Cho and Giovannoni 2006, Pelagibaca bermudensis, Pelagibaca bermudensis Cho and Giovannoni 2006, Pelagibaca bermudensis HTCC2601, Pelagibaca bermudensis str. HTCC2601, Pelagibaca bermudensis strain HTCC2601, Roseovarius sp. HTCC2601
Server load: low (9%) [HD]