STRINGSTRING
recA protein (Pelagibaca bermudensis) - STRING interaction network
"recA" - Protein RecA in Pelagibaca bermudensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recAProtein RecA ; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (213 aa)    
Predicted Functional Partners:
R2601_15447
DNA polymerase I (935 aa)
 
  0.976
lexA
LexA repressor ; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair (231 aa)
   
 
  0.966
mutL
DNA mismatch repair protein MutL ; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (621 aa)
   
  0.965
R2601_09415
Chemotaxis protein (154 aa)
       
 
  0.942
dinB
DNA polymerase IV ; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3’-5’ exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII (391 aa)
 
  0.933
mutS
DNA mismatch repair protein MutS ; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (874 aa)
   
  0.931
R2601_12081
ATP-dependent DNA helicase RecQ (684 aa)
     
  0.899
uvrA
Excinuclease ABC subunit A ; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (958 aa)
 
   
  0.892
R2601_25726
Exonuclease SbcD (377 aa)
   
  0.892
R2601_08216
Uncharacterized protein (395 aa)
   
  0.891
Your Current Organism:
Pelagibaca bermudensis
NCBI taxonomy Id: 314265
Other names: P. bermudensis HTCC2601, Pelagibaca, Pelagibaca Cho and Giovannoni 2006, Pelagibaca bermudensis, Pelagibaca bermudensis Cho and Giovannoni 2006, Pelagibaca bermudensis HTCC2601, Pelagibaca bermudensis str. HTCC2601, Pelagibaca bermudensis strain HTCC2601, Roseovarius sp. HTCC2601
Server load: low (6%) [HD]