STRINGSTRING
RB2654_01275 protein (Maritimibacter alkaliphilus) - STRING interaction network
"RB2654_01275" - ATP synthase subunit E in Maritimibacter alkaliphilus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RB2654_01275ATP synthase subunit E (88 aa)    
Predicted Functional Partners:
RB2654_11028
Adenylate kinase ; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP (191 aa)
         
    0.900
RB2654_01280
NADH-ubiquinone oxidoreductase 41 kD complex I subunit (423 aa)
              0.859
nuoD
NDH-1 subunit D ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (407 aa)
              0.859
RB2654_01265
Uncharacterized protein (286 aa)
              0.859
nuoC
NDH-1 subunit C ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (204 aa)
              0.859
nuoB
NDH-1 subunit B ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (174 aa)
              0.859
nuoA
NUO1 ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (121 aa)
              0.859
RB2654_01285
NADH-ubiquinone oxidoreductase 41 kD complex I subunit (298 aa)
              0.574
RB2654_01295
NADH-quinone oxidoreductase, F subunit (433 aa)
              0.547
RB2654_01290
Uncharacterized protein (75 aa)
              0.547
Your Current Organism:
Maritimibacter alkaliphilus
NCBI taxonomy Id: 314271
Other names: M. alkaliphilus, M. alkaliphilus HTCC2654, Maritimibacter, Maritimibacter Lee et al. 2007, Maritimibacter alkaliphilus, Maritimibacter alkaliphilus HTCC2654, Maritimibacter alkaliphilus Lee et al. 2007, Maritimibacter alkaliphilus str. HTCC2654, Maritimibacter alkaliphilus strain HTCC2654, Rhodobacterales bacterium HTCC2654
Server load: low (10%) [HD]