STRINGSTRING
topA protein (Maritimibacter alkaliphilus) - STRING interaction network
"topA" - DNA topoisomerase I in Maritimibacter alkaliphilus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
topADNA topoisomerase I ; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] (846 aa)    
Predicted Functional Partners:
RB2654_21183
DNA helicase (1569 aa)
   
  0.998
RB2654_10393
DNA polymerase I (932 aa)
 
  0.973
pheT
Phenylalanyl-tRNA synthetase beta subunit (808 aa)
   
 
  0.928
ispDF
Bifunctional enzyme IspD/IspF ; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl- D-erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2- phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4- cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF) (376 aa)
         
  0.913
RB2654_11919
DEAD/DEAH box helicase (681 aa)
   
  0.897
RB2654_06524
DNA processing protein DprA, putative (375 aa)
            0.893
rpoC
Transcriptase subunit beta’ ; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1415 aa)
     
 
  0.887
parE
Topoisomerase IV subunit B ; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule (650 aa)
 
 
  0.866
recA
Recombinase A ; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (361 aa)
 
  0.862
RB2654_20903
DNA polymerase III subunit delta (375 aa)
   
  0.836
Your Current Organism:
Maritimibacter alkaliphilus
NCBI taxonomy Id: 314271
Other names: M. alkaliphilus, M. alkaliphilus HTCC2654, Maritimibacter, Maritimibacter Lee et al. 2007, Maritimibacter alkaliphilus, Maritimibacter alkaliphilus HTCC2654, Maritimibacter alkaliphilus Lee et al. 2007, Maritimibacter alkaliphilus str. HTCC2654, Maritimibacter alkaliphilus strain HTCC2654, Rhodobacterales bacterium HTCC2654
Server load: low (8%) [HD]