STRINGSTRING
dnaJ protein (Maritimibacter alkaliphilus) - STRING interaction network
"dnaJ" - Chaperone protein DnaJ in Maritimibacter alkaliphilus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaJChaperone protein DnaJ ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (382 aa)    
Predicted Functional Partners:
dnaK
Heat shock protein 70 ; Acts as a chaperone (636 aa)
  0.999
grpE
HSP-70 cofactor ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- depend [...] (199 aa)
 
 
  0.995
RB2654_03704
Molecular chaperone, DnaK (417 aa)
 
  0.985
groL
Protein Cpn60 ; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (544 aa)
 
 
  0.983
rpoH
RNA polymerase sigma-32 factor (298 aa)
   
 
  0.975
RB2654_19848
ATP-dependent Clp protease, ATP-binding subunit ClpA (777 aa)
   
  0.968
clpB
Chaperone protein ClpB ; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE (873 aa)
   
  0.968
groS
Protein Cpn10 ; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter (86 aa)
   
 
  0.932
rpoD
Sigma-70 ; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth (670 aa)
   
 
  0.932
ftsH
ATP-dependent zinc metalloprotease FtsH ; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (630 aa)
   
   
  0.911
Your Current Organism:
Maritimibacter alkaliphilus
NCBI taxonomy Id: 314271
Other names: M. alkaliphilus, M. alkaliphilus HTCC2654, Maritimibacter, Maritimibacter Lee et al. 2007, Maritimibacter alkaliphilus, Maritimibacter alkaliphilus HTCC2654, Maritimibacter alkaliphilus Lee et al. 2007, Maritimibacter alkaliphilus str. HTCC2654, Maritimibacter alkaliphilus strain HTCC2654, Rhodobacterales bacterium HTCC2654
Server load: low (11%) [HD]