STRINGSTRING
psbE protein (Synechococcus sp. RCC307) - STRING interaction network
"psbE" - Cytochrome b559 subunit alpha in Synechococcus sp. RCC307
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
psbECytochrome b559 subunit alpha; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation; Belongs to the PsbE/PsbF family (83 aa)    
Predicted Functional Partners:
psbF
Cytochrome b559 subunit beta; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation; Belongs to the PsbE/PsbF family (45 aa)
 
 
 
  0.960
psbL
Photosystem II reaction center protein L; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water-plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization (39 aa)
 
 
 
  0.923
psbB
Photosystem II CP47 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light- driven water-plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily (519 aa)
   
 
 
  0.879
psbC
Photosystem II CP43 reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light- driven water-plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily (461 aa)
   
 
 
  0.868
psbD1
Photosystem II D2 protein; Photosystem II (PSII) is a light-driven water- plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex (352 aa)
   
 
 
  0.850
CAK27162.1
Photosynthesis (352 aa)
   
 
 
  0.850
psbA1
Photosystem II protein D1 1; Photosystem II (PSII) is a light-driven water- plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors (359 aa)
   
 
 
  0.848
CAK28912.1
Photosynthesis (359 aa)
   
 
 
  0.848
psbA2
Photosystem II protein D1 2; Photosystem II (PSII) is a light-driven water- plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors (358 aa)
   
 
 
  0.848
CAK28343.1
Photosynthesis (359 aa)
   
 
 
  0.848
Your Current Organism:
Synechococcus sp. RCC307
NCBI taxonomy Id: 316278
Other names: S. sp. RCC307, Synechococcus sp. MINSyn016-15m-01 substr. AC6A1, Synechococcus sp. RCC307
Server load: low (11%) [HD]