STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lon2PIM1 peptidase. Serine peptidase. MEROPS family S16; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. (878 aa)    
Predicted Functional Partners:
grpE
GrpE chaparone protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-d [...]
 
  
 0.759
groL
Chaperonin 60 kDa subunit (groEL protein); Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 0.726
hslU
ATP-dependent hsl protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
  
  
 0.725
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
  
  
 0.715
hslV
CodW component of CodWX peptidase. Threonine peptidase. MEROPS family T01B; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
   
  
 0.711
htpG
Heat shock protein Hsp90; Molecular chaperone. Has ATPase activity.
   
  
 0.699
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
  
 0.650
clpB
ATPase family associated with various cellular activities; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
 
 0.640
Tcr_1112
ATP-dependent Clp protease ATP-binding subunit ClpA; PFAM: AAA ATPase, central region Clp, N terminal; SMART: ATPase; KEGG: mca:MCA1789 ATP-dependent Clp protease, ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family.
  
 
 0.640
Tcr_1643
Conserved hypothetical protein; KEGG: xac:XAC1101 heat shock protein G homolog.
   
  
 0.622
Your Current Organism:
Hydrogenovibrio crunogenus
NCBI taxonomy Id: 317025
Other names: H. crunogenus XCL-2, Hydrogenovibrio crunogenus XCL-2, Thiomicrospira crunogena XCL-2
Server load: medium (54%) [HD]