STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purMPhosphoribosylformylglycinamidine cyclo-ligase; Identified by match to protein family HMM PF00586; match to protein family HMM PF02769; match to protein family HMM TIGR00878. (351 aa)    
Predicted Functional Partners:
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 0.999
purD
Phosphoribosylamine--glycine ligase; Identified by match to protein family HMM PF01071; match to protein family HMM PF02842; match to protein family HMM PF02843; match to protein family HMM PF02844; match to protein family HMM TIGR00877; Belongs to the GARS family.
  
 0.998
purQ
Phosphoribosylformylglycinamidine synthase I; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...]
 
 0.998
purL
Phosphoribosylformylglycinamidine synthase II; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist [...]
 
 
 0.997
purK
Phosphoribosylaminoimidazole carboxylase, ATPase subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR).
 
 
 0.997
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
  
 0.996
purS
Phosphoribosylformylglycinamidine synthase, PurS protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought [...]
  
 0.996
purH
Bifunctional purine biosynthesis protein PurH; Identified by match to protein family HMM PF01808; match to protein family HMM PF02142; match to protein family HMM TIGR00355.
 
  
 0.991
purE
Phosphoribosylaminoimidazole carboxylase, catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
 
  
 0.989
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase; Identified by similarity to SP:P12046; match to protein family HMM PF01259; match to protein family HMM TIGR00081; Belongs to the SAICAR synthetase family.
 
  
 0.985
Your Current Organism:
Synechococcus sp. JA33Ab
NCBI taxonomy Id: 321327
Other names: Cyanobacteria bacterium Yellowstone A-Prime, S. sp. JA-3-3Ab, Synechococcus sp. JA-3-3Ab, Synechococcus sp. OS-type A str. JA-3-3Ab, Synechococcus sp. OS-type A strain JA-3-3Ab
Server load: low (24%) [HD]