STRINGSTRING
PP1S14_89V6.2 protein (Physcomitrella patens) - STRING interaction network
"PP1S14_89V6.2" - Predicted protein in Physcomitrella patens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PP1S14_89V6.2Predicted protein (334 aa)    
Predicted Functional Partners:
PP1S42_100V6.1
Coatomer subunit beta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (953 aa)
     
  0.983
PP1S309_15V6.1
Coatomer subunit beta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (956 aa)
     
  0.983
PP1S168_28V6.1
Beta-coat protein ; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins (954 aa)
     
  0.983
PP1S138_133V6.1
Annotation not available (463 aa)
     
  0.983
PP1S138_132V6.1
Annotation not available (161 aa)
     
  0.983
PP1S8_105V6.1
Predicted protein (178 aa)
     
  0.983
PP1S73_169V6.1
Predicted protein (174 aa)
     
  0.983
PP1S56_263V6.1
Predicted protein (178 aa)
     
  0.983
PP1S13_191V6.1
Predicted protein (178 aa)
     
  0.983
PP1S86_189V6.1
Predicted protein; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network (1215 aa)
     
  0.982
Your Current Organism:
Physcomitrella patens
NCBI taxonomy Id: 3218
Other names: Bryophyta, Bryophytina, Bryopsida, Funariaceae, Funariales, Funariidae, Moss Superclass V, Musci, P. patens, Physcomitrella, Physcomitrella Bruch & Schimp, Physcomitrella patens, Physcomitrella patens (Hedw.) Bruch & Schimp., Physcomitrium patens, Physcomitrium patens (Hedw.) Mitt., bryophytes, mosses
Server load: low (17%) [HD]