STRINGSTRING
PP1S247_21V6.1 protein (Physcomitrella patens) - STRING interaction network
"PP1S247_21V6.1" - Annotation not available in Physcomitrella patens
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PP1S247_21V6.1Annotation not available (251 aa)    
Predicted Functional Partners:
PP1S2633_1V6.1
Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B (701 aa)
 
0.999
petB
Cytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions (162 aa)
 
  0.997
petD
Cytochrome b6-f complex subunit 4; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions (97 aa)
   
  0.997
PP1S80_58V6.1
Predicted protein (264 aa)
     
  0.976
PP1S61_228V6.1
Predicted protein (321 aa)
     
  0.976
PP1S61_215V6.1
Predicted protein (321 aa)
     
  0.976
PP1S2_788V6.1
Predicted protein (322 aa)
     
  0.976
PP1S272_57V6.1
Predicted protein (158 aa)
       
  0.972
PP1S100_61V6.1
Predicted protein (157 aa)
       
  0.972
PP1S97_277V6.1
Predicted protein; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain (113 aa)
     
  0.966
Your Current Organism:
Physcomitrella patens
NCBI taxonomy Id: 3218
Other names: Bryophyta, Bryophytina, Bryopsida, Funariaceae, Funariales, Funariidae, Moss Superclass V, Musci, P. patens, Physcomitrella, Physcomitrella Bruch & Schimp, Physcomitrella patens, Physcomitrella patens (Hedw.) Bruch & Schimp., Physcomitrium patens, Physcomitrium patens (Hedw.) Mitt., bryophytes, mosses
Server load: low (8%) [HD]