STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glnDprotein-P-II uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen fixation and metabolism. (899 aa)    
Predicted Functional Partners:
glnK
Nitrogen regulatory protein P-II GlnK; Belongs to the P(II) protein family.
 
 
 
 0.973
glnE
Glutamate-ammonia-ligase adenylyltransferase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal transd [...]
 
   
 0.913
map
Methionine aminopeptidase, type I; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily.
  
    0.794
ntrB
Histidine protein kinase, nitrogen regulation protein NtrB (NR(II)).
  
 
 
 0.794
amtB
Ammonium transporter.
 
   
 0.790
mviN
Integral membrane protein MviN; Involved in peptidoglycan biosynthesis. Transports lipid- linked peptidoglycan precursors from the inner to the outer leaflet of the cytoplasmic membrane.
     
 0.748
glnA
Glutamine synthetase, type I; GlnA.
 
   
 0.739
ntrC
Nitrogen regulation protein, sigma 54-dependent response regulator NtrC (NR(I)); Member of the two-component regulatory system NtrB/NtrC, which controls expression of the nitrogen-regulated (ntr) genes in response to nitrogen limitation. Phosphorylated NtrC binds directly to DNA and stimulates the formation of open promoter-sigma54-RNA polymerase complexes.
  
   
 0.720
gltB
Glutamate synthase large subunit protein.
 
   
 0.650
bamA
Bacterial surface antigen (D15); Part of the outer membrane protein assembly complex, which is involved in assembly and insertion of beta-barrel proteins into the outer membrane.
 
    0.633
Your Current Organism:
Azotobacter vinelandii
NCBI taxonomy Id: 322710
Other names: A. vinelandii DJ, Azotobacter vinelandii DJ, Azotobacter vinelandii str. DJ, Azotobacter vinelandii strain DJ
Server load: low (32%) [HD]