STRINGSTRING
ksgA protein (Nitrobacter hamburgensis) - STRING interaction network
"ksgA" - Ribosomal RNA small subunit methyltransferase A in Nitrobacter hamburgensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ksgARibosomal RNA small subunit methyltransferase A; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3’-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits (287 aa)    
Predicted Functional Partners:
pdxA
4-hydroxythreonine-4-phosphate dehydrogenase; Catalyzes the NAD(P)-dependent oxidation of 4- (phosphohydroxy)-L-threonine (HTP) into 2-amino-3-oxo-4- (phosphohydroxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP) (335 aa)
 
   
  0.943
truB
tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (412 aa)
 
 
  0.916
ftsJ
Ribosomal RNA large subunit methyltransferase E; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2’-O position of the ribose in the fully assembled 50S ribosomal subunit (228 aa)
   
 
  0.910
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit (205 aa)
   
 
  0.897
Nham_0163
30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence (566 aa)
   
 
  0.876
Nham_0197
annotation not available (450 aa)
 
   
  0.843
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (130 aa)
   
      0.826
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth; Belongs to the IMPDH/GMPR family (498 aa)
 
      0.823
Nham_2346
annotation not available (352 aa)
              0.822
tsaD
tRNA N6-adenosine threonylcarbamoyltransferase; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family (357 aa)
 
   
  0.820
Your Current Organism:
Nitrobacter hamburgensis
NCBI taxonomy Id: 323097
Other names: N. hamburgensis X14, Nitrobacter hamburgensis, Nitrobacter hamburgensis X14, Nitrobacter hamburgensis str. X14, Nitrobacter hamburgensis strain X14
Server load: low (11%) [HD]