STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lexASOS-response transcriptional repressor, LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (233 aa)    
Predicted Functional Partners:
recA
RecA protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.982
dinB
UMUC-like DNA-repair protein; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.
  
 
 0.876
Nwi_1061
DNA replication and repair protein RecN; May be involved in recombinational repair of damaged DNA.
   
  
 0.817
Nwi_2256
DNA-directed DNA polymerase.
  
 
 0.812
rpoD
RNA polymerase, sigma 70 subunit, RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
  
 
 
 0.571
hrcA
Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
   
 0.569
recR
RecR protein; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO.
  
   
 0.543
Nwi_1840
Molybdopterin molybdochelatase; Catalyzes the insertion of molybdate into adenylated molybdopterin with the concomitant release of AMP. Belongs to the MoeA family.
       0.525
Nwi_2013
DnaB helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily.
 
   
 0.514
nrdR
Protein of unknown function DUF193; Negatively regulates transcription of bacterial ribonucleotide reductase nrd genes and operons by binding to NrdR- boxes; Belongs to the NrdR family.
 
   
 0.513
Your Current Organism:
Nitrobacter winogradskyi
NCBI taxonomy Id: 323098
Other names: N. winogradskyi Nb-255, Nitrobacter winogradskyi Nb-255, Nitrobacter winogradskyi str. Nb-255, Nitrobacter winogradskyi strain Nb-255
Server load: medium (42%) [HD]