node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AM1_0839 | AM1_4338 | AM1_0839 | AM1_4338 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Conserved hypothetical protein. | 0.979 |
AM1_0839 | metH | AM1_0839 | AM1_1256 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.924 |
AM1_0839 | ndhA | AM1_0839 | AM1_2158 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | 0.968 |
AM1_0839 | ndhC | AM1_0839 | AM1_0132 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain A, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.967 |
AM1_0839 | ndhE | AM1_0839 | AM1_2161 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.942 |
AM1_0839 | ndhG | AM1_0839 | AM1_2160 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain J, putative; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. | 0.941 |
AM1_0839 | ndhH | AM1_0839 | AM1_3333 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.972 |
AM1_0839 | ndhJ | AM1_0839 | AM1_0133 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.972 |
AM1_0839 | ndhK | AM1_0839 | AM1_1371 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain B, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.972 |
AM1_0839 | nuoN | AM1_0839 | AM1_2044 | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.966 |
AM1_4338 | AM1_0839 | AM1_4338 | AM1_0839 | Conserved hypothetical protein. | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | 0.979 |
AM1_4338 | metH | AM1_4338 | AM1_1256 | Conserved hypothetical protein. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | 0.934 |
metH | AM1_0839 | AM1_1256 | AM1_0839 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | 0.924 |
metH | AM1_4338 | AM1_1256 | AM1_4338 | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate. | Conserved hypothetical protein. | 0.934 |
ndhA | AM1_0839 | AM1_2158 | AM1_0839 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Iron-sulfur cluster binding protein, putative; Fe3+-transporting ATPase. | 0.968 |
ndhA | ndhC | AM1_2158 | AM1_0132 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain A, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhA | ndhE | AM1_2158 | AM1_2161 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain K; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhA | ndhG | AM1_2158 | AM1_2160 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain J, putative; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I subunit 6 family. | 0.999 |
ndhA | ndhH | AM1_2158 | AM1_3333 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhA | ndhJ | AM1_2158 | AM1_0133 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |