STRINGSTRING
Neut_0005 protein (Nitrosomonas eutropha) - STRING interaction network
"Neut_0005" - Pseudouridine synthase, Rsu in Nitrosomonas eutropha
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Neut_0005Pseudouridine synthase, Rsu (243 aa)    
Predicted Functional Partners:
der
GTP-binding protein EngA; GTPase that plays an essential role in the late steps of ribosome biogenesis (468 aa)
 
   
  0.844
efp
Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase (185 aa)
 
      0.702
Neut_2342
Putative methyltransferase (184 aa)
 
        0.684
Neut_0004
Hypothetical protein (147 aa)
              0.676
rlmN
Radical SAM protein; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs. m2A2503 modification seems to play a crucial role in the proofreading step occurring at the peptidyl transferase center and thus would serve to optimize ribosomal fidelity (379 aa)
 
      0.670
truB
tRNA pseudouridine synthase B; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (329 aa)
 
   
  0.670
gyrB
DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (809 aa)
   
        0.641
Neut_2044
Putative transcriptional regulator; Participates in chromosomal partition during cell division. May act via the formation of a condensin-like complex containing Smc and ScpA that pull DNA away from mid-cell into both cell halves (216 aa)
   
   
  0.597
Neut_0653
Hypothetical protein (312 aa)
 
 
  0.592
Neut_0400
30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence (570 aa)
   
      0.589
Your Current Organism:
Nitrosomonas eutropha
NCBI taxonomy Id: 335283
Other names: N. eutropha, N. eutropha C91, Nitrosomonas eutropha, Nitrosomonas eutropha C91, Nitrosomonas eutropha Koops et al. 2001, Nitrosomonas eutropha str. C91, Nitrosomonas eutropha strain C91
Server load: low (11%) [HD]