STRINGSTRING
Neut_1110 protein (Nitrosomonas eutropha) - STRING interaction network
"Neut_1110" - Ubiquinol-cytochrome c reductase, iron-sulfur subunit in Nitrosomonas eutropha
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Neut_1110Ubiquinol-cytochrome c reductase, iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis (201 aa)    
Predicted Functional Partners:
Neut_1112
Cytochrome c1 (234 aa)
 
  0.999
Neut_1111
Cytochrome b/b6 domain-containing protein; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis (415 aa)
 
  0.999
Neut_2343
Peptidase M16 domain-containing protein (433 aa)
     
  0.994
Neut_1530
Peptidase M16 domain-containing protein (463 aa)
     
  0.994
Neut_0863
Succinate dehydrogenase iron-sulfur subunit (231 aa)
     
  0.991
nuoC
NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (206 aa)
     
  0.989
nuoD
NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (417 aa)
     
 
  0.989
Neut_0928
NADH dehydrogenase subunit G (801 aa)
     
 
  0.986
Neut_0926
NADH dehydrogenase subunit E (162 aa)
     
 
    0.979
Neut_2395
Cytochrome c oxidase, subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B) (280 aa)
 
  0.979
Your Current Organism:
Nitrosomonas eutropha
NCBI taxonomy Id: 335283
Other names: N. eutropha, N. eutropha C91, Nitrosomonas eutropha, Nitrosomonas eutropha C91, Nitrosomonas eutropha Koops et al. 2001, Nitrosomonas eutropha str. C91, Nitrosomonas eutropha strain C91
Server load: low (6%) [HD]