STRINGSTRING
gatB protein (Nitrosomonas eutropha) - STRING interaction network
"gatB" - aspartyl/glutamyl-tRNA amidotransferase subunit B in Nitrosomonas eutropha
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gatBaspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp- tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln) (478 aa)    
Predicted Functional Partners:
gatA
aspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln) (486 aa)
 
  0.999
gatC
aspartyl/glutamyl-tRNA amidotransferase subunit C; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp- tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln) (95 aa)
 
  0.998
glnS
glutaminyl-tRNA synthetase (565 aa)
 
  0.967
aspS
aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps- aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) (593 aa)
 
  0.914
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (463 aa)
   
 
  0.728
Neut_1592
Rod shape-determining protein MreB (353 aa)
         
  0.641
ftsZ
Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity (382 aa)
     
   
  0.616
gpsA
NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (329 aa)
   
        0.554
lysS
lysyl-tRNA synthetase (532 aa)
   
   
  0.545
Neut_1591
Rod shape-determining protein MreC; Involved in formation and maintenance of cell shape (296 aa)
   
        0.541
Your Current Organism:
Nitrosomonas eutropha
NCBI taxonomy Id: 335283
Other names: N. eutropha, N. eutropha C91, Nitrosomonas eutropha, Nitrosomonas eutropha C91, Nitrosomonas eutropha Koops et al. 2001, Nitrosomonas eutropha str. C91, Nitrosomonas eutropha strain C91
Server load: low (10%) [HD]