STRINGSTRING
rpsJ protein (Syntrophobacter fumaroxidans) - STRING interaction network
"rpsJ" - 30S ribosomal protein S10 in Syntrophobacter fumaroxidans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsJ30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes (103 aa)    
Predicted Functional Partners:
Sfum_2118
30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence (596 aa)
 
 
  0.999
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (210 aa)
 
 
  0.999
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (233 aa)
 
 
  0.999
rplB
50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (273 aa)
 
 
  0.999
rplD
50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5’-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (207 aa)
   
 
  0.999
rplW
50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome (97 aa)
 
 
  0.999
rpsE
30S ribosomal protein S5; With S4 and S12 plays an important role in translational accuracy; Belongs to the universal ribosomal protein uS5 family (166 aa)
 
 
  0.999
rpsS
30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA (95 aa)
 
 
  0.999
rplN
50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome (122 aa)
 
 
  0.999
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome (130 aa)
 
 
  0.999
Your Current Organism:
Syntrophobacter fumaroxidans
NCBI taxonomy Id: 335543
Other names: S. fumaroxidans MPOB, Syntrophobacter fumaroxidans, Syntrophobacter fumaroxidans DSM 10017, Syntrophobacter fumaroxidans MPOB, Syntrophobacter fumaroxidans str. MPOB, Syntrophobacter fumaroxidans strain MPOB
Server load: low (20%) [HD]