STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
petAUbiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis (214 aa)    
Predicted Functional Partners:
petB
Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis
 
 0.999
petC
Cytochrome c1
 
 0.999
XCC1667
Cytochrome c2
 
 
 0.957
ptrA
Zinc protease; Predicted Zn-dependent peptidases
   
 
 0.942
nuoC
NADH-quinone oxidoreductase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family
   
 
 0.932
nuoD
NADH-quinone oxidoreductase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family
   
 
 0.931
nuoG
NADH dehydrogenase/NADH:ubiquinone oxidoreductase 75 kD subunit (chain G)
  
 
 0.931
nuoE
NADH:ubiquinone oxidoreductase 24 kD subunit
  
 
 0.928
nuoB
NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity)
   
 
 0.921
nuoF
NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain; Belongs to the complex I 51 kDa subunit family
   
 
 0.921
Your Current Organism:
Xanthomonas campestris campestris
NCBI taxonomy Id: 340
Other names: X. campestris pv. campestris, Xanthomonas campestris, Xanthomonas campestris (pv. campestris), Xanthomonas campestris campestris, Xanthomonas campestris pv. campestris
Server load: low (6%) [HD]