STRINGSTRING
XCC1100 protein (Xanthomonas campestris campestris) - STRING interaction network
"XCC1100" - Unnamed protein product in Xanthomonas campestris campestris
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
XCC1100Unnamed protein product (471 aa)    
Predicted Functional Partners:
XCC1099
annotation not available (200 aa)
 
   
  0.979
dnaE1
Error-prone DNA polymerase; DNA polymerase involved in damage-induced mutagenesis and translesion synthesis (TLS). It is not the major replicative DNA polymerase (1082 aa)
 
   
  0.960
lexA1
LexA repressor 1; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair (201 aa)
 
 
  0.921
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (927 aa)
   
 
  0.805
lexA2
LexA repressor 2; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair (213 aa)
   
 
  0.742
dnaN
Beta sliding clamp; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3’-5’ exonuclease proofreading activity. The beta chain is required for initiation of replication as [...] (366 aa)
     
 
  0.678
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (343 aa)
   
 
  0.632
Ada
DNA methylation and regulatory protein Ada or; 3-methyladenine DNA glycosylase (521 aa)
   
 
  0.568
XCC0054
ATP-dependent RNA helicase; Distinct helicase family with a unique C-terminal domain including a metal-binding cysteine cluster (839 aa)
   
 
  0.568
XCC1586
annotation not available (91 aa)
   
          0.556
Your Current Organism:
Xanthomonas campestris campestris
NCBI taxonomy Id: 340
Other names: X. campestris pv. campestris, Xanthomonas campestris, Xanthomonas campestris (pv. campestris), Xanthomonas campestris campestris, Xanthomonas campestris pv. campestris
Server load: low (13%) [HD]