STRINGSTRING
lexA1 protein (Xanthomonas campestris campestris) - STRING interaction network
"lexA1" - LexA repressor 1 in Xanthomonas campestris campestris
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lexA1LexA repressor 1; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair (201 aa)    
Predicted Functional Partners:
XCC1100
Unnamed protein product (471 aa)
 
 
  0.921
dnaE1
Error-prone DNA polymerase; DNA polymerase involved in damage-induced mutagenesis and translesion synthesis (TLS). It is not the major replicative DNA polymerase (1082 aa)
 
 
  0.910
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (343 aa)
   
 
  0.849
XCC1099
annotation not available (200 aa)
 
   
  0.840
dnaE2
DNA polymerase III, alpha subunit (1219 aa)
   
 
  0.780
recX
Regulatory protein RecX; Modulates RecA activity (162 aa)
   
   
  0.770
dinB
DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3’-5’ exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII (359 aa)
   
 
  0.637
birA
Bifunctional ligase/repressor BirA; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5’-adenylate (BirA-bio- 5’-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon (321 aa)
           
  0.583
XCC4076
Two-component system sensor protein; Na+/proline symporter (1147 aa)
     
 
  0.547
Ada
DNA methylation and regulatory protein Ada or; 3-methyladenine DNA glycosylase (521 aa)
       
 
  0.543
Your Current Organism:
Xanthomonas campestris campestris
NCBI taxonomy Id: 340
Other names: X. campestris pv. campestris, Xanthomonas campestris, Xanthomonas campestris (pv. campestris), Xanthomonas campestris campestris, Xanthomonas campestris pv. campestris
Server load: low (18%) [HD]