STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib-5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily (349 aa)    
Predicted Functional Partners:
tkt
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate
 
 0.960
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family
  
 0.955
rbsK
Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5- phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway
   
 0.952
rpi2
Ribose 5-phosphate isomerase RpiB
    
 0.946
glmU
Bifunctional protein GlmU; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP- GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5- monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain; In the C-terminal section; belongs to the transferase hexapeptide repeat family
  
 0.936
rpi1
Ribose-5-phosphate isomerase A; Catalyzes the reversible conversion of ribose-5- phosphate to ribulose 5-phosphate
  
 0.931
nudE
ADP compounds hydrolase; ADP-ribose pyrophosphatase; Nicotinamide mononucleotide adenylyltransferase
  
 0.916
XCC0838
MutT-like protein; NTP pyrophosphohydrolases including oxidative damage repair enzymes
  
 0.914
xanA
Phosphohexose mutases; Involved in xanthan production
  
 0.914
manB
Phosphomannomutase
  
 0.914
Your Current Organism:
Xanthomonas campestris campestris
NCBI taxonomy Id: 340
Other names: X. campestris pv. campestris, Xanthomonas campestris, Xanthomonas campestris (pv. campestris), Xanthomonas campestris campestris, Xanthomonas campestris pv. campestris
Server load: low (6%) [HD]