STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmMPhosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family. (444 aa)    
Predicted Functional Partners:
glmU
UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family.
 
 0.997
glmS
Glutamine--fructose-6-phosphate transaminase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
 
 0.990
Dred_1810
PFAM: hexokinase; KEGG: dre:406339 hexokinase 2.
   
 
 0.918
dacA
Protein of unknown function DUF147; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria.
   
 
 0.835
murC
UDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family.
  
 
 
 0.663
recA
RecA protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
    
 0.661
Dred_3054
Uncharacterized P-loop ATPase protein UPF0042; Displays ATPase and GTPase activities.
 
   
 0.629
Dred_1383
TIGRFAM: glucose-1-phosphate thymidyltransferase; PFAM: Nucleotidyl transferase; KEGG: chy:CHY_0976 glucose-1-phosphate thymidylyltransferase.
 
  
 0.626
rpsC
SSU ribosomal protein S3P; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
  
   0.622
Dred_0293
PFAM: YbbR family protein; KEGG: mta:Moth_2247 YbbR-like.
  
  
 0.576
Your Current Organism:
Desulfotomaculum reducens
NCBI taxonomy Id: 349161
Other names: D. reducens MI-1, Desulfotomaculum reducens MI-1, Desulfotomaculum reducens str. MI-1, Desulfotomaculum reducens strain MI-1
Server load: low (40%) [HD]