STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
argSKEGG: mbu:Mbur_1739 arginyl-tRNA synthetase; TIGRFAM: arginyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (558 aa)    
Predicted Functional Partners:
ileS
Isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily.
 
 0.977
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
 
 0.950
pyrG
CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates.
 
  
 0.947
leuS
TIGRFAM: leucyl-tRNA synthetase; KEGG: mac:MA1611 leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family.
 
 0.944
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).
 
 0.943
guaAB
GMP synthase (glutamine-hydrolyzing); Catalyzes the synthesis of GMP from XMP.
  
  
 0.915
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro).
 
 0.909
aspS
aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn).
 
 0.905
rps7
SSU ribosomal protein S7P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center; Belongs to the universal ribosomal protein uS7 family.
  
  
 0.863
rps4
SSU ribosomal protein S4P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
 
  
 0.850
Your Current Organism:
Methanothrix thermoacetophila
NCBI taxonomy Id: 349307
Other names: M. thermoacetophila PT, Methanosaeta thermophila PT, Methanothrix thermoacetophila PT, Methanothrix thermophila DSM 6194, Methanothrix thermophila PT
Server load: low (38%) [HD]