STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recArecA protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (333 aa)    
Predicted Functional Partners:
recX
Regulatory protein RecX; Modulates RecA activity; Belongs to the RecX family.
  
 
 0.997
lexA
SOS-response transcriptional repressor, LexA; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair.
  
 
 0.996
Gura_1220
Ribonuclease H; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids.
 
 0.990
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
 
 0.985
dinB
DNA-directed DNA polymerase; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.
  
 0.950
Gura_4296
TIGRFAM: ATP-dependent DNA helicase, RecQ family; ATP-dependent DNA helicase RecQ; PFAM: helicase domain protein; HRDC domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases-like.
  
 0.948
Gura_0002
DNA polymerase III, beta subunit; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
  
 0.941
Gura_3098
PFAM: beta-ketoacyl synthase; short-chain dehydrogenase/reductase SDR; phosphopantetheine-binding; KR.
  
 0.939
Gura_4326
ATP-dependent DNA helicase PcrA; PFAM: UvrD/REP helicase.
 
 
 0.924
Gura_0296
PFAM: DNA polymerase B, exonuclease; DNA polymerase B region; SMART: DNA-directed DNA polymerase B.
  
 0.913
Your Current Organism:
Geobacter uraniireducens
NCBI taxonomy Id: 351605
Other names: G. uraniireducens Rf4, Geobacter uraniireducens Rf4, Geobacter uraniireducens str. Rf4, Geobacter uraniireducens strain Rf4, Geobacter uraniumreducens JCM 13001
Server load: low (32%) [HD]