STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
CN09_01785Hypothetical protein; Uncharacterized protein; Derived by automated computational analysis using gene prediction method: Protein Homology (192 aa)    
Predicted Functional Partners:
Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein
Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily
Phosphomethylpyrimidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology
Aldehyde-activating protein; Derived by automated computational analysis using gene prediction method: Protein Homology
Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives
Atp-dependent dna helicase ruvb; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing
Queuine trna-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...]
Ribosome-binding factor a; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA
Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology
Phenylalanyl-trna synthetase subunit alpha; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (6%) [HD]