node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CN09_00790 | CN09_10145 | CN09_00790 | CN09_10145 | Alpha/beta hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology | O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.904 |
CN09_00790 | ispDF | CN09_00790 | CN09_07765 | Alpha/beta hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF) | 0.676 |
CN09_00790 | metH | CN09_00790 | CN09_04750 | Alpha/beta hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
CN09_04915 | metH | CN09_04915 | CN09_04750 | ArsR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
CN09_04915 | nnrD | CN09_04915 | CN09_07485 | ArsR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology | Hypothetical protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of both epim [...] | 0.498 |
CN09_05700 | metH | CN09_05700 | CN09_04750 | Drug:proton antiporter; Derived by automated computational analysis using gene prediction method: Protein Homology | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
CN09_10145 | CN09_00790 | CN09_10145 | CN09_00790 | O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology | Alpha/beta hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.904 |
CN09_10145 | metH | CN09_10145 | CN09_04750 | O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
CN09_10145 | nnrD | CN09_10145 | CN09_07485 | O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology | Hypothetical protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of both epim [...] | 0.999 |
cobN | cobO | CN09_05820 | CN09_05830 | Cobalamin biosynthesis protein CobN; Derived by automated computational analysis using gene prediction method: Protein Homology | Cobinamide adenolsyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids | 0.995 |
cobN | metH | CN09_05820 | CN09_04750 | Cobalamin biosynthesis protein CobN; Derived by automated computational analysis using gene prediction method: Protein Homology | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
cobO | cobN | CN09_05830 | CN09_05820 | Cobinamide adenolsyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids | Cobalamin biosynthesis protein CobN; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.995 |
cobO | gcvP | CN09_05830 | CN09_06885 | Cobinamide adenolsyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | 0.805 |
cobO | ispDF | CN09_05830 | CN09_07765 | Cobinamide adenolsyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF) | 0.678 |
cobO | metH | CN09_05830 | CN09_04750 | Cobinamide adenolsyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
gcvP | cobO | CN09_06885 | CN09_05830 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | Cobinamide adenolsyltransferase; Required for both de novo synthesis of the corrin ring for the assimilation of exogenous corrinoids. Participates in the adenosylation of a variety of incomplete and complete corrinoids | 0.805 |
gcvP | glyA | CN09_06885 | CN09_10385 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism | 0.999 |
gcvP | metH | CN09_06885 | CN09_04750 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.999 |
glyA | gcvP | CN09_10385 | CN09_06885 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | 0.999 |
glyA | ispDF | CN09_10385 | CN09_07765 | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF) | 0.709 |