STRINGSTRING
CN09_05380 protein (Agrobacterium rhizogenes) - STRING interaction network
"CN09_05380" - Dihydrofolate reductase in Agrobacterium rhizogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CN09_05380Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (172 aa)    
Predicted Functional Partners:
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2’-deoxyuridine- 5’-monophosphate (dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis (307 aa)
 
  0.999
CN09_06460
Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8-dihydropteroate (H2Pte), the immediate precursor of folate derivatives (287 aa)
   
   
  0.938
purK
N5-carboxyaminoimidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5- aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5- carboxyaminoimidazole ribonucleotide (N5-CAIR) (352 aa)
          0.928
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (1000 aa)
   
   
  0.910
CN09_06470
2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase; Derived by automated computational analysis using gene prediction method- Protein Homology (172 aa)
       
  0.902
CN09_05390
Protein HflC; HflC and HflK could regulate a protease (304 aa)
 
        0.884
CN09_03985
Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method- Protein Homology (729 aa)
         
  0.869
CN09_05385
Protein HflK; HflC and HflK could encode or regulate a protease (377 aa)
   
        0.865
CN09_10375
Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5’-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5’-phosphate; In the C-terminal section; belongs to the HTP reductase family (369 aa)
 
     
  0.837
CN09_16240
Riboflavin biosynthesis protein; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the ribF family (327 aa)
 
     
  0.812
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (6%) [HD]