STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpoBDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1380 aa)    
Predicted Functional Partners:
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates
 
 0.999
rpsC
30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation
 
 
 0.999
rpoC
DNA-directed RNA polymerase subunit beta'; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates
 0.999
rplL
50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation
 
 0.999
nusA
Transcription termination/antitermination protein NusA; Participates in both transcription termination and antitermination
 
 
 0.999
rpoD
RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth
 
 
 0.998
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome
 
 
 0.998
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body; Belongs to the universal ribosomal protein uS5 family
 
 
 0.998
rpsS
30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA
 
 
 0.998
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes
 
 
 0.998
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (9%) [HD]